48 research outputs found

    Are We Cobblers without Shoes? Making Computer Science Data FAIR

    Get PDF

    Searching biomedical ontologies based on content

    Get PDF
    As more ontologies become publicly available, finding the 'right' ontologies becomes much harder. In this paper, we introduce a new ontology search technique which is based on corpus analysis. In particular, we look at the case when users search for ontologies relevant to a particular topic (e.g., an ontology about anatomy). Our experiments demonstrate that using our method for query expansion improves retrieval results by a 113%, compared to the tools that search only for the user query terms and consider only class and property names

    Searching Ontologies Based on Content: Experiments in the Biomedical Domain

    No full text
    As more ontologies become publicly available, finding the "right" ontologies becomes much harder. In this paper, we address the problem of ontology search: finding a collection of ontologies from an ontology repository that are relevant to the user's query. In particular, we look at the case when users search for ontologies relevant to a particular topic (e.g., an ontology about anatomy). Ontologies that are most relevant to such query often do not have the query term in the names of their concepts (e.g., the Foundational Model of Anatomy ontology does not have the term "anatomy" in any of its concepts' names). Thus, we present a new ontology-search technique that helps users in these types of searches. When looking for ontologies on a particular topic (e.g., anatomy), we retrieve from the Web a collection of terms that represent the given domain (e.g., terms such as body, brain, skin, etc. for anatomy). We then use these terms to expand the user query. We evaluate our algorithm on queries for topics in the biomedical domain against a repository of biomedical ontologies. We use the results obtained from experts in the biomedical-ontology domain as the gold standard. Our experiments demonstrate that using our method for query expansion improves retrieval results by a 113%, compared to the tools that search only for the user query terms and consider only class and property names (like Swoogle). We show 43% improvement for the case where not only class and property names but also property values are taken into account

    Research Challenges and Opportunities in Knowledge Representation, Section 4.1.1 Hybrid KR

    Get PDF
    Final report edited by Natasha Noy and Deborah McGuinness. Report Section 4.1.1 Hybrid KR, co-authored by Yuliya Lierer, UNO faculty member

    Research Challenges and Opportunities in Knowledge Representation, Section 2.4.2 Advances in satisfiability and answer set programming

    Get PDF
    Final report edited by Natasha Noy and Deborah McGuinness. Report Section 2.4.2, Advances in satisfiability and answer set programming, authored by Yuliya Lierer, UNO faculty member

    Research Challenges and Opportunities in Knowledge Representation, Section 2.3.2: Applications based on formal models

    Get PDF
    Final report edited by Natasha Noy and Deborah McGuinness. Report Section 2.3.2, Applications based on formal models, authored by Yuliya Lierer, UNO faculty member

    Ontology Alignment: An annotated Bibliography

    Get PDF
    Ontology mapping, alignment, and translation has been an active research component of the general research on semantic integration and interoperability. In our talk, we gave our own classification of different topics in this research. We talked about types of heterogeneity between ontologies, various mapping representations, classified methods for discovering methods both between ontology concepts and data, and talked about various tasks where mappings are used. In this extended abstract of our talk, we provide an annotated bibliography for this area of research, giving readers brief pointers on representative papers in each of the topics mentioned above. We did not attempt to compile a comprehensive bibliography and hence the list in this abstract is necessarily incomplete. Rather, we tried to sketch a map of the field, with some specific reference to help interested readers in their exploration of the work to-date

    Towards More Usable Dataset Search: From Query Characterization to Snippet Generation

    Full text link
    Reusing published datasets on the Web is of great interest to researchers and developers. Their data needs may be met by submitting queries to a dataset search engine to retrieve relevant datasets. In this ongoing work towards developing a more usable dataset search engine, we characterize real data needs by annotating the semantics of 1,947 queries using a novel fine-grained scheme, to provide implications for enhancing dataset search. Based on the findings, we present a query-centered framework for dataset search, and explore the implementation of snippet generation and evaluate it with a preliminary user study.Comment: 4 pages, The 28th ACM International Conference on Information and Knowledge Management (CIKM 2019

    National Center for Biomedical Ontology: Advancing biomedicine through structured organization of scientific knowledge

    Get PDF
    The National Center for Biomedical Ontology is a consortium that comprises leading informaticians, biologists, clinicians, and ontologists, funded by the National Institutes of Health (NIH) Roadmap, to develop innovative technology and methods that allow scientists to record, manage, and disseminate biomedical information and knowledge in machine-processable form. The goals of the Center are (1) to help unify the divergent and isolated efforts in ontology development by promoting high quality open-source, standards-based tools to create, manage, and use ontologies, (2) to create new software tools so that scientists can use ontologies to annotate and analyze biomedical data, (3) to provide a national resource for the ongoing evaluation, integration, and evolution of biomedical ontologies and associated tools and theories in the context of driving biomedical projects (DBPs), and (4) to disseminate the tools and resources of the Center and to identify, evaluate, and communicate best practices of ontology development to the biomedical community. Through the research activities within the Center, collaborations with the DBPs, and interactions with the biomedical community, our goal is to help scientists to work more effectively in the e-science paradigm, enhancing experiment design, experiment execution, data analysis, information synthesis, hypothesis generation and testing, and understand human disease
    corecore